KSC-99pc0136

At Launch Pad 17-A, Cape Canaveral Air Station, the Stardust spacecraft is revealed after removal of a protective canister. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006

KSC-99pc0135

Workers watch as the protective canister surrounding the Stardust spacecraft is removed at Launch Pad 17-A, Cape Canaveral Air Station. Preparations continue for liftoff of the Boeing Delta II rocket carrying Stardust on Feb. 6. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006

KSC-99pc0122

In the Payload Hazardous Servicing Facility, workers guide a protective canister as it is lowered over the Stardust spacecraft. Once it is enclosed, Stardust will be moved to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. Stardust is targeted for liftoff on Feb. 6 aboard a Boeing Delta II rocket for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006

KSC-99pc0101

In the Payload Hazardous Servicing Facility, workers help guide the spacecraft Stardust being lowered in order to mate it with the third stage of a Boeing Delta II rocket. Targeted for launch Feb. 6 from Launch Pad 17-A, Cape Canaveral Air Station, aboard the Delta II rocket, the spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006

KSC-99pc0100

In the Payload Hazardous Servicing Facility, workers help guide the overhead crane lifting the Stardust spacecraft. Stardust is being moved in order to mate it with the third stage of a Boeing Delta II rocket. Targeted for launch Feb. 6 from Launch Pad 17-A, Cape Canaveral Air Station, aboard the Delta II rocket, the spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006

KSC-02pd1003

KENNEDY SPACE CENTER, FLA. — In the Space Assembly and Encapsulation Facility 2 (SAEF-2), workers guide an overhead crane toward the Comet Nucleus Tour (CONTOUR) spacecraft below. The crane will move the spacecraft to the upper stage of a Boeing Delta II rocket for mating. CONTOUR will provide the first detailed look into the heart of a comet — the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard the Delta II is scheduled for July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

KSC-02pd0601

KENNEDY SPACE CENTER, FLA. — In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), workers at left hold the antenna and solar panel steady while make adjustments before attaching it to the Comet Nucleus Tour (CONTOUR) spacecraft. Scheduled for launch July 1, 2002, from LC 17A at Cape Canaveral Air Force Station, CONTOUR will provide the first detailed look into the heart of a comet — the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets, Encke and Schwassmann-Wachmann 3. It will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. The Applied Physics Laboratory of Johns Hopkins University, Baltimore, Md., built CONTOUR and will also be in control of the spacecraft after launch

KSC-02pd0594

KENNEDY SPACE CENTER, FLA. – Workers in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) prepare the Comet Nucleus Tour (CONTOUR) spacecraft for antenna and solar panel installation. CONTOUR will provide the first detailed look into the heart of a comet — the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets, Encke and Schwassmann-Wachmann 3. It will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. The Applied Physics Laboratory of Johns Hopkins University, Baltimore, Md., built CONTOUR and will also be in control of the spacecraft after launch, which is scheduled for July 1, 2002, from LC 17A at Cape Canaveral Air Force Station

KSC-02pd0585

KENNEDY SPACE CENTER, FLA. — The NASA Comet Nucleus Tour (CONTOUR) spacecraft arrived at KSC on April 24 and was transported to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) to begin final preparations for launch. CONTOUR will provide the first detailed look into the heart of a comet – the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets, Encke and Schwassmann-Wachmann 3, taking the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. The Applied Physics Laboratory of Johns Hopkins University, Baltimore, Md., built CONTOUR and will also be in control of the spacecraft after launch, scheduled for July 1, 2002, from LC 17A at Cape Canaveral Air Force Station

KSC-02pd0583

KENNEDY SPACE CENTER, FLA. — The NASA Comet Nucleus Tour (CONTOUR) spacecraft arrived at KSC on April 24 and was transported to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) to begin final preparations for launch. CONTOUR will provide the first detailed look into the heart of a comet – the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets, Encke and Schwassmann-Wachmann 3, taking the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. The Applied Physics Laboratory of Johns Hopkins University, Baltimore, Md., built CONTOUR and will also be in control of the spacecraft after launch, scheduled for July 1, 2002, from LC 17A at Cape Canaveral Air Force Station